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20ns (in Minkowski background)

@ Horndeski theory is the most general scalar tensor theory
with one scalar field which leads to second order field egs.

@ The most straightforward way to obtain Horndeski theory is
by considering Galileons; i.e. scalar fields that are invariant
under the Galilean shift symmetry ¢ — ¢ + b 2" + c.

@ The most general Lagrangian that has the above property
and gives second order field equations is

Lagrangian 2nd order Field egs. for Minkowski

L=cid+coX — c3XOb+ caX [(D¢)2 _ Qﬁ,,qba“a”gb} _

X [(mqs)?’ — 3(0¢) 8,9, § + Qa#aywvawma%} :

where X = —1/20*¢0,¢ is the kinetic term.
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Introduction to

ant Galileons

@ To introduce gravity we promote 7,,, — g, and 9, — @M.

@ Doing that, one needs to be careful since covariant
derivatives do not commute. The naive covariantisation
leads to higher derivatives in the field equations.

@ Then, we need to add some correction terms, which leads
the following Lagrangian

I =c16+cX —c3X0¢ + %Xzfz +esX [(0)2 = M ]

Cs

+es X2 — DX (O = 306" 0y + 26,08

and ¢,,, = V,.V,¢. Over-circles mean that it’s computed
with respect to Levi Civita connection.
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eski gravity

@ A generalized version of the above is the Horndeski one

Ly =Ga(¢,X), Lz=—-Gs(4,X)(0¢)¢,
Ly = Ga(6, )R + Gax(6, X) |(99)° = V,.V,6ViV7g)

® s 2. 1
Ls = Gs(6, X)Gu VV"$ = <Gs x(#, X) | (09)°
+ 2V, V0V VAGVAVEG — 39V, V,6VEV g

where the total Lagrangianis . = 327, L;.
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Horndeski gravity

vitational waves in standard Horndeski

@ The speed of propagation of gravitational waves for
Horndeski gravity in flat FLRW background is

Speed of GW in standard Horndeski

G4 — X (4G5 x + Gs.4)

2
Cph — 5
T Gy—2XGyx — X(H¢Gs x — Gs.4)

@ According to GW observations Prog. Theor.Phys. 126 (2011),
511-529, it is required that ¢y = 1 which is achieved only if
G4(¢, X) = G4(¢) and G5 = constant
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ational waves in standard Horndeski

cg #C

Cg =C

quartic/quintic Galileons [13, 14]
Fab Four [15]
de Sitter Horndeski [49]
G ¢” [51], f(¢) -Gauss-Bonnet [52]

General Relativity
quintessence/k-essence [46]
Brans-Dicke/ f(R) [47, 48]

Kinetic Gravity Braiding [50]

Horndeski

Summary of the viable (left) and non-viable (right)
scalar-tensor theories after GW170817. PRL 119, 251304 (2017)

Sebastian Bahamonde



Introduction to Teleparallel theories of gravity

e

Sebastian Bahamonde



Horndeski gravity
Introduction to Teleparallel theories of gravity
Tel lel Ho

allel equivalent of GR

o Teleparallel equivalent of GR (TEGR) is an alternative
and equivalent formulation of gravity from GR which uses
the tetrad formalism and its connection has zero
curvature and non-zero torsion.
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Introduction to Teleparallel theories of gravity
Teleparallel H

allel equivalent of GR

o Teleparallel equivalent of GR (TEGR) is an alternative
and equivalent formulation of gravity from GR which uses
the tetrad formalism and its connection has zero
curvature and non-zero torsion.

o Tetrads (or vierbein) e“, are the linear basis on the
spacetime manifold, and at each point of the spacetime,
tetrads gives us basis for vectors on the tangent space.

o Tetrads satisfy the orthogonality condition; £, e",, = 6,
and E,,"e™,, = ¢, and the metric can be reconstructed via

uv = nabeauebu )
where 7, is the Minkowski metric.
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ion tensor

@ By using the Teleparallel connection (Weitzenbdck
connection), one can express the torsion tensor as follows

Torsion tensor

= A A A_ B A B
T”W:I‘pw—I‘pW:EA’)<e vp—e€ pptw e, —w pye #>.

@ The torsion tensor is generally non-vanishing, and
transforms covariantly under both diffeomorphisms and
local Lorentz transformations.

@ The pure tetrad formalism was the initial framework used
for TG, which chooses a specific frame where the spin
connection w%,, vanishes. Be careful choosing the correct
tetrad which is compatible with this gauge.
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ci theorem in Teleparallel gravity

@ By splitting the curvature tensor and contracting it with the
metric ¢** R* ww = R (Ricci scalar-general one), one gets

Ricci theorem final in TEGR

R=R+T-B=0—-R=-T+B,

where B = 20,,(eT*) is a boundary term in the action (see
later) and T' = 177, T, + 1T°,, T, — T*,,T,"* is the
scalar torsion.

Important remark here

The Ricci scalar computed from the Levi-Civita connection R
differs from the scalar torsion 7" by a boundary term B.
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Teleparallel H

allel equivalent of General Relativity action

@ The TEGR action is formulated based on the torsion scalar
T, namely

STEGR = / [T + 2K2Lm] ed'z.

where k2 = 87G, e = det(eZ) = /—g and L, is any matter
Lagrangian.
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@ The TEGR action is formulated based on the torsion scalar
T, namely

STEGR = / [T + 2K2Lm] ed'z.
where k2 = 87G, e = det(eZ) = /—g and L, is any matter

Lagrangian.

@ T and the scalar curvature R differs by a boundary term B
as R=-T+ B so:
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Introduction to Teleparallel theories of gravity

parallel equivalent of General Relativity action

@ The TEGR action is formulated based on the torsion scalar
T, namely

STEGR = / [T + 2H2Lm] ed'z.

where k? = 877G, e = det(ef,) = /—g and Ly, is any matter
Lagrangian.

@ T and the scalar curvature R differs by a boundary term B
as R=-T + B so:

Equivalence between field equations

The teleparallel field equations are equivalent to the Einstein
field equations.
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different ways of understanding gravity

Equivalence on their field equations

VERY IMPORTANT POINT: TEGR has the same equations as
GR, so CLASSICALLY it is impossible to make any
observation to distinguish between them.
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o different ways of understanding gravity

Equivalence on their field equations

VERY IMPORTANT POINT: TEGR has the same equations as
GR, so CLASSICALLY it is impossible to make any
observation to distinguish between them.

| A\

Validity of TEGR

VERY IMPORTANT POINT: All classical experiments already
done, that have confirmed GR, also can be understood as a
confirmation of TEGR.

| \

What happens if we modify TEGR?

If we modify the TEGR action, a priori there is no equivalence
between modified theories from GR and modified Teleparallel
theories.
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Teleparallel Horndeski gravity

decomposition

The torsion tensor can be decomposed in its irreducible parts

as
_ 1 TVoP _ 70
ay = 6€uuap y U =1 ops
1 1
taul/ = 5 (Tauu + Tuau) + 6 (guavu + gl/;ﬂ}a) - ggauvu )

where €,,.., is the totally anti-symmetric Levi-Civita symbol.
From these we build the scalars

Tax = aua” y Tvec = UNU“ y Tten= tauutgwj )
and the torsion scalar is a linear combination

3 2 2
iTax + then - gTvec :
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The resulting field equations must be at most second order in
terms of derivatives of the tetrad fields (or equivalently second
order in terms of metric tensor derivatives).
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Teleparallel Horndeski gravity PPN analysis

Conditions for the theory

The resulting field equations must be at most second order in
terms of derivatives of the tetrad fields (or equivalently second
order in terms of metric tensor derivatives).

The scalar invariants should not be parity violating.
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Building the theory
GW in Teleparallel Horndeski

Teleparallel Horndeski gravity PPN analysis

Conditions for the theory

The resulting field equations must be at most second order in
terms of derivatives of the tetrad fields (or equivalently second
order in terms of metric tensor derivatives).

The scalar invariants should not be parity violating.

The field equations must be covariant under local Lorentz
transformations.

Sebastian Bahamonde The Teleparallel version of Horndeski gravity
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ditions for the theory

—

Condition 4*
Contractions of the torsion tensor can at most be quadratic.

Any number of contractions of the irreducible parts of the
torsion tensor will result in second order field equations. This
means that an infinite number of terms can be formed in
Teleparallel gravity that give rise to second order field
equations. However, it is unclear how physical such higher
order contributions will be.
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Covariantisation prescription
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antisation proce

GR Teleparallel
Ny —> Guv e, — h%,
Oy — Vyu | 0y — Dy = 0y + k¢ weS2

Covariantisation prescription

Following the same procedure as before, we start from
L=ci¢p+cX — e3X0b + caX [(m¢)2 _ 8H0V¢8“8”d>} -

— X |(09)° — 8(06) ,0,00" 6 + 20,0,60" P 90r5"6 | .
and then we covariantise it using the Teleparallel prescription.
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o Since D, coincides with V,, computed with the Levi-Civita
connection, then the Teleparallel Lagrangians Zfzg L are
identical to 3°°_, L;.
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Introduction to Teleparallel th y
Teleparallel Horndeskl gravny

allel Horndeskl constructlon

o Since D, coincides with V,, computed with the Levi-Civita
connection, then the Teleparallel Lagrangians Zfzg L are
identical to 37 _, L;.

@ However, when one is considering Teleparallel gravity, £o
would be different to L, since there are more scalars that
one can construct which satisfies the conditions. Notation:
Ly = Ly = Gy(¢, X) and extra term Loie

Sebastian Bahamonde
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Teleparallel Horndeski gravity

Con 1S

| Horndeski construction - Constructing Lrele

@ Taking quadratic contractions of the torsion tensor, the
most general Lagrangian of Teleparallel gravity satisfying
the conditions turns out to be f(Tax, Tvec, Tten) (Without a
scalar field)'.

'S. Bahamonde, C. G. Béhmer and M. Kréak, Phys. Lett. B 775 (2017), 37-43.

Sebastian Bahamonde



Ho

Introduction to Teleparallel the:
Teleparallel Horndeski gravity
Conclusions

| Horndeski construction - Constructing Lrele

@ Taking quadratic contractions of the torsion tensor, the
most general Lagrangian of Teleparallel gravity satisfying
the conditions turns out to be f(Tax, Tvec, Tten) (Without a
scalar field)'.

@ If one adds the scalar field, one can construct the following
7 extra independent scalars:

'S. Bahamonde, C. G. Béhmer and M. Kriak, Phys. Lett. B 775 (2017), 37-43.
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Teleparallel Horndeski gravity

arallel Horndeski construction - Constructing Lreie

@ Taking quadratic contractions of the torsion tensor, the
most general Lagrangian of Teleparallel gravity satisfying
the conditions turns out to be f(Tax, Tvec, Tten) (Without a
scalar field)'.

@ If one adds the scalar field, one can construct the following
7 extra independent scalars:

Possible independent scalars

I = UM(JS;M , J1= a“a”qS;u(b;,, , J3= Uatomlﬁb;,ud);u )
J5 = touytauuﬁb;u‘ﬁ;ﬂ ) JG = tgﬂytgﬁyﬁb;uﬁb;u(ﬁ;ﬂﬁb;ﬂ )
Jg = tg'uytguyﬁi);uﬁb;ﬂ , Jio= E#Vpaaytapggb;uﬁb;a .

'S. Bahamonde, C. G. Béhmer and M. Krésak, Phys. Lett. B 775 (2017), 37-43.
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@ Then, the extra term Lt related to Teleparallel gravity will
be equal to

Extra term in Lo in Teleparallel Horndeski

»CTeIe - GTeIe(¢7 X7 T7 Tax7 Tvec; -[27 Jl) J3) J57 J67 J87 JlO) °
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@ Then, the extra term Lt related to Teleparallel gravity will
be equal to

Extra term in Lo in Teleparallel Horndeski

»CTeIe - GTeIe(¢7 XJ T7 Tax7 Tvec; -[27 Jl) J3) J57 J67 J87 JlO) °

@ ltis equivalent to consider Ti., to 1" above.
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Teleparallel Horndeski gravity

parallel Horndeski construction - Constructing Lree

@ Then, the extra term Lt related to Teleparallel gravity will
be equal to

Extra term in Lo in Teleparallel Horndeski

»CTeIe - GTeIe(¢7 XJ T7 Tax7 Tvec; -[27 Jl) J3) J57 J67 J87 JlO) °

@ ltis equivalent to consider Ti., to 1" above.

@ There are 10 independent scalars related to torsion and
also contraction of it with the scalar field.
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al Lagrangian Teleparallel Horndeski

The final Lagrangian reads?

Teleparallel Horndeski Lagrangian

5
L= Z L; + L1ele = Horndeski + Lrgle ,
=2

where
ETeIe = GTE|€(¢7 X7 T7 Ta><7 TVGC7 127 J, J37 J57 J67 Js, Jl()) ’
L2 =G2(¢,X), L3=G3(¢,X)09,

£4=Ga(4,X) (=T + B) + G x (6, X) [(@9)* = b ] ,
. 1
L5 = Gs(6, X)Gud™” = =G, x(6,X) [ (09)° + 26, 6,6,

— 3¢ ot (09) | .

2s. Bahamonde, K. F. Dialektopoulos and J. Levi Said, Phys. Rev. D 100 (2019)
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Teleparallel
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SO T

GR and TEGR are equivalent at
the level of their field equations

Gi = Gy = 0,Gmue = FGIT
Cublc Teleparallel |———+ 0= HOe Z O
@

Conformal
Teleparallel

Non-mimimally
couplings between
Gand T and B

Kinetic
Teleparallel

F(e)=1

New G
Relativity

Couplings with T

TEGR

FIG. 1: Relationship between Teleparallel Horndenski and various theories
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onal waves in Teleparallel Horndeski in flat FLRW background

@ By considering tensorial perturbations only
(0e*, = 3a 6.6 h;j) and after some cumbersome
calculations, one gets the following wave equation

. . k2
hij + (3 + an) Hhi; — (1 + ar) 2hj =0,
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Teleparallel Horndeski gravity

itational waves in Teleparallel Horndeski in flat FLRW background

@ By considering tensorial perturbations only
(0e*, = 3a 6.6 h;j) and after some cumbersome
calculations, one gets the following wave equation

. . "
hij + (3 +an) Hhij — (1 +ar) —3hi; =0,

where a7 = c2 — 1 and the speed of GW being equal to®

Speed of GW in Teleparallel Horndeski
2X

. . 1
ar (2G4,X — 2G5, — G5,x(¢ — ¢H) — 2GTele, 35 — 5GTele,J5) .

= Y

3 S. Bahamonde, K. F. Dialektopoulos, V. Gakis and J. Levi Said, Phys. Rev. D 101
(2020) no.8, 084060
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@ As we said before, for G, = 0 (standard case), one gets
that to achieve a theory consistent with the GW
observations ¢y = 1, one requires G5(¢, X ) = constant and
G4(¢, X) = G4(¢). Hence, Horndeski gravity is highly
constraint.
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Conclusions

) Horndeski using Teleparallel gravity

@ As we said before, for G, = 0 (standard case), one gets
that to achieve a theory consistent with the GW
observations ¢y = 1, one requires G5(¢, X ) = constant and
Ga(¢, X) = G4(¢). Hence, Horndeski gravity is highly
constraint.

o If one has Teleparallel Horndeski, c2. is corrected and then
when does no need those conditions. Indeed, G5 = G5(¢)
and G4 = G4(¢, X) still respect this condition:
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ing Horndeski using Teleparallel gravity

@ As we said before, for G, = 0 (standard case), one gets
that to achieve a theory consistent with the GW
observations ¢y = 1, one requires G5(¢, X) = constant and
Ga(¢, X) = G4(¢). Hence, Horndeski gravity is highly
constraint.

o If one has Teleparallel Horndeski, c2. is corrected and then
when does no need those conditions. Indeed, G5 = G5(¢)
and G4 = G4(¢, X) still respect this condition:

Teleparallel Lagrangian respecting ¢y = 1 (o = 0)

L = Gielo($s X, Ty Tvecs Tax; Iz, J1, I3, Jg, Js — 475, J10) + Ga($, X) + G3(4, X)06,
+Ga(¢, X) (=T + B) + Ga,x [(99)® — ¢ &' +4J5]
+ G5($)Guv '’ — 4J5G5 4 -
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etrized post-Newtonian limit

@ Tool for testing the viability of metric theories of gravity, by
a set of ten (usually constant) parameters.
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Teleparallel Horndeski gravity

etrized post-Newtonian limit

@ Tool for testing the viability of metric theories of gravity, by
a set of ten (usually constant) parameters.

@ To do this here, one needs to adapt this method for
tetrads*:

&o0 = U,
é(ij) =Ud;j,
&0y = —i(3+4“¥+0¢1 —az+ G —20)V; — i(l +az — G +2H)W;,
€00 = %(1 — 28U + %(2+2’y+a3 +C1—26)D1 + (1437 =28+ (2 + )

+ (14 ¢3)®P3 + (37 + 3Ca — 26) Py — £ — %(Cl —20)%A.

#U. Ualikhanova and M. Hohmann, Phys. Rev. D 100 (2019) no.10, 104011
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Teleparallel Horndeski gravity

result

@ The final result for our theory is®

== =a3=0=0=0G=u=0,

5 S. Bahamonde, K. F. Dialektopoulos, M. Hohmann and J. Levi Said,
[arXiv:2003.11554 [gr-qc]]-

Sebastian Bahamonde



Teleparallel Horndeski gravity

result

@ The final result for our theory is®
f=a=m=a3=0=0=3=u=0,

@ This indicates that our theory is fully conservative, i.e., it
does not exhibit any preferred-frame or preferred-location
effects, or a violation of the conservation of total
energy-momentum.
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@ The final result for our theory is®

== =a3=0=0=0G=u=0,

@ This indicates that our theory is fully conservative, i.e., it
does not exhibit any preferred-frame or preferred-location
effects, or a violation of the conservation of total
energy-momentum.

@ The only PPN parameters, for which we obtain a deviation
from their general relativity values are « and 3 (see our
paper for more details). One can find theories being
identical to GRat PPN:a =38 =1
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sions

@ Horndeski is the most general second order field equations
with one scalar field. This theory was highly constraint
after GW170817.

@ We formulate an analogue version of it in the Teleparallel
framework. Since torsion has first derivatives of tetrads,
there are more terms that respects the second order
condition.

@ The Lagrangians Ls, Ly and L5 are the same in Horndeski
and for Teleparallel Horndeski but L, differs by a term
L1ele = Grele(¢, X, T, Tax, Tvec, I2, J1, J3, J5, J6, J3, J10)-

Sebastian Bahamonde



Conclusions

o After analysing tensorial perturbations for GW, we found
that for Teleparallel Horndeski, one can restore the terms
G5 = G5(¢) and G4 = G4(¢, X) giving a consistent theory
with cr =1 (¢g = ¢).
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Conclusions

o After analysing tensorial perturbations for GW, we found
that for Teleparallel Horndeski, one can restore the terms
G5 = G5(¢) and G4 = G4(¢, X) giving a consistent theory
with cr =1 (¢g = ¢).

@ We performed the PPN analysis finding that only o and 3
differ from the value from GR, and there are a large
classes of theories having o = 5 = 1.
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