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Galileons (in Minkowski background)

Horndeski theory is the most general scalar tensor theory
with one scalar field which leads to second order field eqs.
The most straightforward way to obtain Horndeski theory is
by considering Galileons; i.e. scalar fields that are invariant
under the Galilean shift symmetry φ→ φ+ bµx

µ + c.
The most general Lagrangian that has the above property
and gives second order field equations is

Lagrangian 2nd order Field eqs. for Minkowski

L = c1φ+ c2X − c3X2̄φ+ c4X
[
(2̄φ)2 − ∂µ∂νφ∂µ∂νφ

]
−

− c5X
[
(2̄φ)3 − 3 (2̄φ) ∂µ∂νφ∂

µ∂νφ+ 2∂µ∂νφ∂
ν∂λφ∂λ∂

µφ
]
,

where X = −1/2∂µφ∂µφ is the kinetic term.
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Covariant Galileons

To introduce gravity we promote ηµν → gµν and ∂µ → ∇̊µ.
Doing that, one needs to be careful since covariant
derivatives do not commute. The naive covariantisation
leads to higher derivatives in the field equations.
Then, we need to add some correction terms, which leads
the following Lagrangian

L̊ = c1φ+ c2X − c3X2̊φ+
c4

2
X2R̊+ c4X

[
(2̊)2 − φµνφµν

]
+ c5X

2G̊µνφµν −
c5

3
X
[
(2̊)3 − 32̊φµνφµν + 2φµνφ

νλφµλ

]
.

and φµν = ∇̊µ∇̊νφ. Over-circles mean that it’s computed
with respect to Levi Civita connection.
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Horndeski gravity

A generalized version of the above is the Horndeski one

L̊2 = G2(φ,X) , L̊3 = −G3(φ,X) (2̊φ)φ ,

L̊4 = G4(φ,X)R̊+G4,X(φ,X)
[
(2̊φ)2 − ∇̊µ∇̊νφ∇̊µ∇̊νφ

]
,

L̊5 = G5(φ,X)G̊µν∇̊µ∇̊νφ−
1

6
G5,X(φ,X)

[
(2̊φ)3

+ 2∇̊ν∇̊µφ∇̊ν∇̊λφ∇̊λ∇̊µφ− 32̊φ∇̊µ∇̊νφ∇̊µ∇̊νφ
]
,

where the total Lagrangian is L̊ =
∑5

i=2 L̊i.
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Gravitational waves in standard Horndeski

The speed of propagation of gravitational waves for
Horndeski gravity in flat FLRW background is

Speed of GW in standard Horndeski

c2
T =

G4 −X(φ̈G5,X +G5,φ)

G4 − 2XG4,X −X(Hφ̇G5,X −G5,φ)

According to GW observations Prog.Theor.Phys. 126 (2011),

511-529, it is required that cT = 1 which is achieved only if
G4(φ,X) = G4(φ) and G5 = constant
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Gravitational waves in standard Horndeski

Figure: Summary of the viable (left) and non-viable (right)
scalar-tensor theories after GW170817. PRL 119, 251304 (2017)
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Teleparallel equivalent of GR

Teleparallel equivalent of GR (TEGR) is an alternative
and equivalent formulation of gravity from GR which uses
the tetrad formalism and its connection has zero
curvature and non-zero torsion.
Tetrads (or vierbein) eaµ are the linear basis on the
spacetime manifold, and at each point of the spacetime,
tetrads gives us basis for vectors on the tangent space.
Tetrads satisfy the orthogonality condition; Emµenµ = δnm
and Emνemµ = δνµ and the metric can be reconstructed via

gµν = ηabe
a
µe
b
ν ,

where ηab is the Minkowski metric.

Sebastian Bahamonde The Teleparallel version of Horndeski gravity
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Torsion tensor

By using the Teleparallel connection (Weitzenböck
connection), one can express the torsion tensor as follows

Torsion tensor

T ρµν = Γ̃ρνµ−Γ̃ρµν = EA
ρ
(
eAν,µ−eAµ,ν+ωABµe

B
ν−ωABνeBµ

)
.

The torsion tensor is generally non-vanishing, and
transforms covariantly under both diffeomorphisms and
local Lorentz transformations.
The pure tetrad formalism was the initial framework used
for TG, which chooses a specific frame where the spin
connection ωabµ vanishes. Be careful choosing the correct
tetrad which is compatible with this gauge.
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Ricci theorem in Teleparallel gravity

By splitting the curvature tensor and contracting it with the
metric gµνRλ µλν ≡ R (Ricci scalar-general one), one gets

Ricci theorem final in TEGR

R = R̊+ T −B = 0→ R̊ = −T +B ,

where B = 2
e∂µ(eTµ) is a boundary term in the action (see

later) and T = 1
4T

ρ
µνTρ

µν + 1
2T

ρ
µνT

νµ
ρ − T λλµTννµ is the

scalar torsion.

Important remark here

The Ricci scalar computed from the Levi-Civita connection R̊
differs from the scalar torsion T by a boundary term B.
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Teleparallel equivalent of General Relativity action

The TEGR action is formulated based on the torsion scalar
T , namely

STEGR =

∫ [
T + 2κ2Lm

]
e d4x .

where κ2 = 8πG, e = det(eaµ) =
√
−g and Lm is any matter

Lagrangian.
T and the scalar curvature R̊ differs by a boundary term B
as R̊ = −T +B so:

Equivalence between field equations
The teleparallel field equations are equivalent to the Einstein
field equations.
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Two different ways of understanding gravity

Equivalence on their field equations
VERY IMPORTANT POINT: TEGR has the same equations as
GR, so CLASSICALLY it is impossible to make any
observation to distinguish between them.

Validity of TEGR
VERY IMPORTANT POINT: All classical experiments already
done, that have confirmed GR, also can be understood as a
confirmation of TEGR.

What happens if we modify TEGR?
If we modify the TEGR action, a priori there is no equivalence
between modified theories from GR and modified Teleparallel
theories.
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If we modify the TEGR action, a priori there is no equivalence
between modified theories from GR and modified Teleparallel
theories.
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Torsion decomposition

The torsion tensor can be decomposed in its irreducible parts
as

aµ =
1

6
εµνσρT

νσρ , vµ = T σσµ ,

tσµν =
1

2
(Tσµν + Tµσν) +

1

6
(gνσvµ + gνµvσ)− 1

3
gσµvν ,

where εµνσρ is the totally anti-symmetric Levi-Civita symbol.
From these we build the scalars

Tax = aµa
µ , Tvec = vµv

µ , Tten = tσµνt
σµν ,

and the torsion scalar is a linear combination

T =
3

2
Tax +

2

3
Tten −

2

3
Tvec .
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Conditions for the theory

Condition 1
The resulting field equations must be at most second order in
terms of derivatives of the tetrad fields (or equivalently second
order in terms of metric tensor derivatives).

Condition 2
The scalar invariants should not be parity violating.

Condition 3
The field equations must be covariant under local Lorentz
transformations.
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Conditions for the theory

Condition 4*
Contractions of the torsion tensor can at most be quadratic.

Any number of contractions of the irreducible parts of the
torsion tensor will result in second order field equations. This
means that an infinite number of terms can be formed in
Teleparallel gravity that give rise to second order field
equations. However, it is unclear how physical such higher
order contributions will be.
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Covariantisation procedure

GR Teleparallel
ηµν → gµν eaµ → haµ
∂µ → ∇̊µ ∂µ → Dµ = ∂µ + hcµw

a
bcS

b
a

Table: Covariantisation prescription

Following the same procedure as before, we start from

L = c1φ+ c2X − c3X2̄φ+ c4X
[
(2̄φ)2 − ∂µ∂νφ∂µ∂νφ

]
−

− c5X
[
(2̄φ)3 − 3 (2̄φ) ∂µ∂νφ∂

µ∂νφ+ 2∂µ∂νφ∂
ν∂λφ∂λ∂

µφ
]
,

and then we covariantise it using the Teleparallel prescription.
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Teleparallel Horndeski construction

Since Dµ coincides with ∇̊µ computed with the Levi-Civita
connection, then the Teleparallel Lagrangians

∑5
i=3 L are

identical to
∑5

i=3 L̊i.
However, when one is considering Teleparallel gravity, L2

would be different to L̊2 since there are more scalars that
one can construct which satisfies the conditions. Notation:
L2 = L̊2 = G2(φ,X) and extra term LTele
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Teleparallel Horndeski construction - Constructing LTele

Taking quadratic contractions of the torsion tensor, the
most general Lagrangian of Teleparallel gravity satisfying
the conditions turns out to be f(Tax, Tvec, Tten) (without a
scalar field)1.
If one adds the scalar field, one can construct the following
7 extra independent scalars:

Possible independent scalars

I2 = vµφ;µ , J1 = aµaνφ;µφ;ν , J3 = vσt
σµνφ;µφ;ν ,

J5 = tσµνt µ̄
σ νφ;µφ;µ̄ , J6 = tσµνt µ̄ν̄

σ φ;µφ;νφ;µ̄φ;ν̄ ,

J8 = tσµνt ν̄
σµ φ;νφ;ν̄ , J10 = εµνρσa

νtαρσφ;µφ;α .

1S. Bahamonde, C. G. Böhmer and M. Krššák, Phys. Lett. B 775 (2017), 37-43.
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Teleparallel Horndeski construction - Constructing LTele

Then, the extra term LTele related to Teleparallel gravity will
be equal to

Extra term in L2 in Teleparallel Horndeski

LTele = GTele(φ,X, T, Tax, Tvec, I2, J1, J3, J5, J6, J8, J10) .

It is equivalent to consider Tten to T above.
There are 10 independent scalars related to torsion and
also contraction of it with the scalar field.
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Final Lagrangian Teleparallel Horndeski

The final Lagrangian reads2

Teleparallel Horndeski Lagrangian

L =

5∑
i=2

Li + LTele = Horndeski + LTele ,

where
LTele = GTele(φ,X, T, Tax, Tvec, I2, J1, J3, J5, J6, J8, J10) ,

L2 = G2(φ,X) , L3 = G3(φ,X)2̊φ ,

L4 = G4(φ,X) (−T +B) +G4,X(φ,X)
[
(2̊φ)2 − φ;µνφ;µν

]
,

L5 = G5(φ,X)Gµνφ;µν −
1

6
G5,X(φ,X)

[
(2̊φ)3 + 2φ ν

;µ φ α
;ν φ µ

;α

− 3φ;µνφ
µν (2̊φ)

]
.

2S. Bahamonde, K. F. Dialektopoulos and J. Levi Said, Phys. Rev. D 100 (2019)
no.6, 064018 doi:10.1103/PhysRevD.100.064018 [arXiv:1904.10791 [gr-qc]].Sebastian Bahamonde The Teleparallel version of Horndeski gravity
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Gravitational waves in Teleparallel Horndeski in flat FLRW background

By considering tensorial perturbations only
(δekµ = 1

2a δ
i
µδ
kjhij) and after some cumbersome

calculations, one gets the following wave equation

ḧij + (3 + αM )Hḣij − (1 + αT )
k2

a2
hij = 0 ,

where αT = c2
T − 1 and the speed of GW being equal to3

Speed of GW in Teleparallel Horndeski

αT =
2X

M2
∗

(
2G4,X − 2G5,φ −G5,X(φ̈− φ̇H)− 2GTele,J8 −

1

2
GTele,J5

)
.

3 S. Bahamonde, K. F. Dialektopoulos, V. Gakis and J. Levi Said, Phys. Rev. D 101
(2020) no.8, 084060
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Reviving Horndeski using Teleparallel gravity

As we said before, for GTele = 0 (standard case), one gets
that to achieve a theory consistent with the GW
observations cT = 1, one requires G5(φ,X) = constant and
G4(φ,X) = G4(φ). Hence, Horndeski gravity is highly
constraint.
If one has Teleparallel Horndeski, c2

T is corrected and then
when does no need those conditions. Indeed, G5 = G5(φ)
and G4 = G4(φ,X) still respect this condition:

Teleparallel Lagrangian respecting cT = 1 (αT = 0)

L = G̃tele(φ,X, T, Tvec, Tax, I2, J1, J3, J6, J8 − 4J5, J10) +G2(φ,X) +G3(φ,X)2φ ,

+G4(φ,X) (−T + B) +G4,X

[
(2φ)

2 − φ;µνφ
;µν

+ 4J5

]
+G5(φ)Gµνφ

;µν − 4J5G5,φ .

Sebastian Bahamonde The Teleparallel version of Horndeski gravity
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Parametrized post-Newtonian limit

Tool for testing the viability of metric theories of gravity, by
a set of ten (usually constant) parameters.
To do this here, one needs to adapt this method for
tetrads4:

2
e00 = U ,

2
e(ij) = γUδij ,

3
e(0i) = −

1

4
(3 + 4γ + α1 − α2 + ζ1 − 2ξ)Vi −

1

4
(1 + α2 − ζ1 + 2ξ)Wi ,

4
e00 =

1

2
(1− 2β)U2 +

1

2
(2 + 2γ + α3 + ζ1 − 2ξ)Φ1 + (1 + 3γ − 2β + ζ2 + ξ)Φ2

+ (1 + ζ3)Φ3 + (3γ + 3ζ4 − 2ξ)Φ4 − ξΦW −
1

2
(ζ1 − 2ξ)A .

4U. Ualikhanova and M. Hohmann, Phys. Rev. D 100 (2019) no.10, 104011
Sebastian Bahamonde The Teleparallel version of Horndeski gravity
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tetrads4:

2
e00 = U ,

2
e(ij) = γUδij ,

3
e(0i) = −

1

4
(3 + 4γ + α1 − α2 + ζ1 − 2ξ)Vi −

1

4
(1 + α2 − ζ1 + 2ξ)Wi ,

4
e00 =

1

2
(1− 2β)U2 +

1

2
(2 + 2γ + α3 + ζ1 − 2ξ)Φ1 + (1 + 3γ − 2β + ζ2 + ξ)Φ2

+ (1 + ζ3)Φ3 + (3γ + 3ζ4 − 2ξ)Φ4 − ξΦW −
1

2
(ζ1 − 2ξ)A .

4U. Ualikhanova and M. Hohmann, Phys. Rev. D 100 (2019) no.10, 104011
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PPN - result

The final result for our theory is5

ξ = α1 = α2 = α3 = ζ1 = ζ2 = ζ3 = ζ4 = 0 ,

This indicates that our theory is fully conservative, i.e., it
does not exhibit any preferred-frame or preferred-location
effects, or a violation of the conservation of total
energy-momentum.
The only PPN parameters, for which we obtain a deviation
from their general relativity values are α and β (see our
paper for more details). One can find theories being
identical to GR at PPN: α = β = 1

5 S. Bahamonde, K. F. Dialektopoulos, M. Hohmann and J. Levi Said,
[arXiv:2003.11554 [gr-qc]].
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Conclusions

Horndeski is the most general second order field equations
with one scalar field. This theory was highly constraint
after GW170817.
We formulate an analogue version of it in the Teleparallel
framework. Since torsion has first derivatives of tetrads,
there are more terms that respects the second order
condition.
The Lagrangians L̊3, L̊4 and L̊5 are the same in Horndeski
and for Teleparallel Horndeski but L̊2 differs by a term
LTele = GTele(φ,X, T, Tax, Tvec, I2, J1, J3, J5, J6, J8, J10).
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After analysing tensorial perturbations for GW, we found
that for Teleparallel Horndeski, one can restore the terms
G5 = G5(φ) and G4 = G4(φ,X) giving a consistent theory
with cT = 1 (cg = c).
We performed the PPN analysis finding that only α and β
differ from the value from GR, and there are a large
classes of theories having α = β = 1.
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